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Abstract

The paper investigates the way in which the property of a language

operation ⋄ ”to be invertible” helps in solving language equations of the

type L⋄Y = R. In the beginning, the simple case where ⋄ denotes catena-

tion is studied, but the results are then generalized for various invertible

insertion and deletion operations. For most of the considered operations

⋄, the problem ”Does there exist a solution Y to the equation L⋄Y = R?”

turns out to be decidable for given regular languages L and R.

1 Introduction

Starting with the definition of a context-free language as the minimal solution of
a system of equations (see [13]), continuing with equations and systems of equa-
tions over free monoids or free semigroups (see [5] and its references), language
and word equations have constantly played a central role in formal language
theory. In this paper we study language equations of the form L⋄Y = R, where
⋄ is an invertible binary word operation extended to languages in the obvious
fashion.

The case where ⋄ denotes catenation and the involved languages are regular
has been considered by Conway in [2]. Some results relevant to our topic are
presented in Section 2. If both languages L and R are regular, the existence
of a solution to the equation is decidable and a maximal solution can be ef-
fectively constructed. (In case L is context-free, the existence of a solution is
undecidable.) Moreover, for a given regular language R, one can provide a list
of solutions to all possible equations LY = R, where L is an arbitrary language.

We are interested in solving language equations where the operations in-
volved are more complex than catenation. Operations which generalize the

1The work reported here is part of the project 11281 of the Academy of Finland
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catenation and quotient have been investigated in [6], [14]. Some of them are
mentioned in Section 3 and among them we can list insertion, shuffle, controlled
insertion, deletion, controlled deletion, scattered deletion, permuted deletion.

Solving equations of the type L⋄Y = R for abstract language-theoretic oper-
ations which possess some kind of inverses bears some resemblance to questions
studied for categories of abstract binary relations (see, for instance, [3]).

One of the results states that, if ⋄ is a binary operation possessing a ”right-
inverse ” and a solution to the equation exists, then a maximal solution R′ can
also be found. The language R′ can be obtained from the given languages by
applying the ”right-inverse” of ⋄. A formal language theoretic formulation and
proof of this result are given in Section 4. Almost all the considered operations
⋄ are non-commutative. Section 5 deals with the analogous equation X ⋄L = R
and its solutions, where ⋄ is an operation possessing a ”left-inverse”.

Section 6 investigates the decidability of the existence of solutions to the
above equations. For most operations, the problem turns out to be decidable
for L and R given regular languages.

Section 7 points out how the obtained results can be used to solve more
general linear equations and systems of equations, as well as quadratic and
other equations.

2 The equations LY = R and XL = R

Let Σ be a finite alphabet and Σ∗ the set of all words over Σ, including the
empty word λ. The length of a word w ∈ Σ∗ is denoted by lg(w). The left
quotient of a word u by a word v is defined by

v\u = w iff u = vw,

and the right quotient of u by v,

u/v = w iff u = wv.

The mirror image of a word u is denoted by Mi(u). For two languages L1 and
L2 over Σ∗,

L1 − L2 = {u| u ∈ L1 and u 6∈ L2}, Lc
1 = Σ∗ − L1.

REG denotes the family of regular languages. For unexplained formal language
notions the reader is referred to [12].

In this section we investigate equations of the form LY = R and XL = R,
where L, R are given languages, R regular.

Theorem 1 Let L, R be languages over the alphabet Σ, R a regular one. If the
equation LY = R has a solution Y ⊆ Σ∗ then it has also a regular solution R′,
which includes all the other solutions to the equation (set inclusion).
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Proof. Let R′ be the language defined by:

R′ = (L\Rc)c.

(i) R′ is a regular language. Indeed, the left quotient of a regular language
by an arbitrary language is regular.

(ii) LR′ ⊆ R. Assume, for the sake of contradiction, that LR′ is not included
in R. There exist then words u ∈ L, v ∈ R′, such that uv ∈ Rc. This implies
that v = (u\uv) ⊆ (L\Rc) - a contradiction with the fact that v was a word in
R′.

(iii) Any language Y with the property LY ⊆ R is included in R′. Indeed,
assume that there exists a language Y as before such that Y −R′ 6= ∅. Let v be
a word in Y −R′. As v belongs to L\Rc, there exist words w ∈ Rc, u ∈ L, such
that uv = w. This implies w ∈ LY ⊆ R - a contradiction with the fact that w
was a word in Rc.

If the language equation LY = R has a solution Y ⊆ Σ∗, according to (iii),
Y ⊆ R′ and therefore R = LY ⊆ LR′. As, according to (ii), we have that
LR′ ⊆ R, we deduce that LR′ = R. It has been showed in (i) that R′ is a
regular language, therefore the proof of the theorem is complete. ♥

Corollary 1 The regular solution R′ from the preceding theorem can be effec-
tively constructed if L is a regular or context-free language.

In the following we will answer the question concerning whether or not the
equation LY = R has a solution Y , where L, R are given languages, R a regular
one. Moreover, the existence of a singleton solution, that is, a solution Y in the
class of singleton languages, will be investigated.

More precisely, for given languages L and R, R regular, we consider the
problems:

”Does there exist a solution Y to the equation LY = R?”
”Does there exist a singleton solution Y = {w} to the equation LY = R?”
In the cases where the considered problem is decidable, it will follow from

the proof that a solution to the equation can be effectively constructed.

Theorem 2 The problem ”Does there exist a solution Y to the equation LY =
R?” is decidable for regular languages L and R.

Proof. For given regular languages L, R over an alphabet Σ define:

R′ = (L\Rc)c.

It has been proved in Theorem 1 that, if there exists a solution Y ⊆ Σ∗ to the
equation LY = R, then LR′ = R. Moreover, the regular solution R′ can be
effectively constructed (see Corollary 1).

The algorithm which decides our problem will start with the construction of
R′. Then we find out whether or not LR′ equals R. ♥
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Theorem 3 The problem ”Does there exist a singleton solution Y = {w} to
the equation LY = R?” is decidable for regular languages L and R.

Proof. Let L, R be nonempty regular languages over an alphabet Σ and let
m be the length of the shortest word in R. If there exists a word w such
that L{w} = R, then it must satisfy the condition lg(w) ≤ m. The problem
”Is L{w} = R?” is decidable for words w and regular languages L and R.
The algorithm for deciding our problem will consist of checking whether or not
L{w} = R for all words w with lg(w) ≤ m. The answer is YES if such a word
w is found, and NO otherwise. ♥

The study of the existence of a solution to the equation LY = R, when R is
regular, is completed by the following undecidability results.

Proposition 1 The problem ”Does there exist a solution Y to the equation
LY = R?” is undecidable for context-free languages L and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let # be a letter which does not
occur in Σ. There exists a regular language R = Σ∗# such that the problem of
the theorem is undecidable for context-free languages L.

Indeed, we notice that the equation (L#)Y = Σ∗# holds for languages L,
Y over Σ exactly in case L = Σ∗ and Y = {λ}. Hence, if we could decide the
problem of the theorem, we would be deciding the problem ”Is L = Σ∗?” for
context-free languages L, which is impossible. ♥

We notice that in the above proof the language Y = {λ} is a singleton.
Therefore also the problem ”Does there exist a singleton solution Y = {w} to
the equation LY = R?” is undecidable for context-free languages L and regular
languages R.

We will conclude this section by showing that, for a given regular language
R, one can effectively construct a list of solutions to all the possible equations
LY = R, where L is an arbitrary language.

Theorem 4 Let R be a regular language over an alphabet Σ. There exists a
finite number n ≥ 1 of distinct regular languages R′

i, 1 ≤ i ≤ n, such that for
any L ⊆ Σ∗ the following statements are equivalent:

(i) There exists a solution Y ⊆ Σ∗ to the equation LY = R.

(ii) There exists an i, 1 ≤ i ≤ n, such that LR′

i = R.

Moreover, the regular languages R′

i, 1 ≤ i ≤ n, can be effectively constructed.

Proof. It follows from Theorem 1. The languages R′

i, 1 ≤ i ≤ n, are constructed
by forming the complements of all the possible (finitely many) languages that
can be obtained from Rc by left quotient. Since the equivalence problem is
decidable for regular languages, duplicates can be removed from the list R′

i. ♥
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The list obtained in Theorem 4 may contain languages R′

i for which the
equality LR′

i = R does not hold for any language L. However, these languages
can be removed from the list as shown in the remaining part of this section.

Note that, by using the mirror image operator, results similar to Theorem 1,
Corollary 1, Theorems 2 – 4, Proposition 1 can be obtained also for equations
of the type XL = R, where L, R are given languages and R is regular.

In particular, for a given regular language R one can effectively construct a
finite list of distinct regular languages R′′

1 , R′′

2 , . . . , R′′

m, m ≥ 1 with the following
property. For any language L, the equation XL = R has a solution X iff it has
a solution among the languages R′′

j , 1 ≤ j ≤ m.
We are now in position to effectively exclude from the list of Theorem 4

the languages R′

i for which the equality LR′

i = R does not hold for any L.
According to the preceding property, if for a language R′

i such an L exists then
we also have R′′

j R′

i = R for some index j, 1 ≤ j ≤ m.
For each i, 1 ≤ i ≤ n, our algorithm will check, for all j, 1 ≤ j ≤ m, whether

or not R′′

j R′

i = R. If the equality holds for at least one index j, the language
R′

i is retained in the list, otherwise it is eliminated.
In a similar way, we can effectively exclude from the list R′′

1 , . . . , R′′

m the
languages R′′

j for which the equality R′′

j L = R does not hold for any L.

3 Insertion and deletion operations

Catenation is a very basic binary word operation. As we will see in Sections 4
– 6, we can prove results similar to the ones in Section 2 also for more general
invertible word operations. Actually, as Theorem 5 will show, one can generalize
Theorem 1 to concern any equation of the form L ⋄ Y = R where the operation
⋄ possesses an ”inverse” operation.

In this section we will list some invertible binary word operations for which
theorems similar to Theorem 1 hold. For a more detailed study of these oper-
ations, see [6], [14]. The binary word operations are extended to languages in
the natural fashion.

Definition 1 If ⋄ is a binary word operation, we define the corresponding lan-
guage operation by

L1 ⋄ L2 =
⋃

u∈L1,v∈L2

(u ⋄ v).

The most natural generalization of catenation is the insertion operation.
Given two words u and v, instead of catenating v at the right extremity of u,
the new operation inserts it in an arbitrary place in u:

u< v = {u1vu2| u = u1u2, u1, u2 ∈ Σ∗}.

For example, cd< a = {acd, cad, cda}, where a, c, d are letters in Σ. Notice
that the result of insertion is a finite set of words and their catenation is an
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element of this set. Insertion can also be viewed as a one step rewriting relation
of a semi-Thue system (see [4] for details).

A more exotic variant of insertion is obtained if we combine the ordinary
insertion with the commutative variant. The commutative variant com(v) of a
word v is the set of all words obtained by arbitrarily permuting the letters of v.
The permuted insertion of v into u will then consist of inserting into u all the
words from the commutative variant of v:

u< v = u< com(v).

Observe that even though the above operations generalize the catenation,
catenation cannot be obtained as a particular case of any of them. This happens
because we cannot force the insertion to take place at the right extremity of the
word. This brings up the notion of control: the insertion can be done only after
a so-called control letter.

The controlled insertion of v into u, next to the control-letter a ∈ Σ (shortly,
controlled insertion), is defined as

u
a

< v = {u1avu2| u = u1au2}.

Special cases of catenation can be now obtained by using a marker and the
insertion next to the marker, and the general case by erasing the marker.

Notice finally that all the previously defined types of insertion were ”com-
pact”. The word to be inserted was treated ”as a whole”. A ”scattered ” type
of insertion can be considered as well. Instead of inserting a word, we sparsely
insert its letters. If the inserted letters are in the same order as in the original,
we obtain the well-known shuffle operation (see [11]):

u ∐ v = {u1v1u2v2 . . . ukvk| u = u1 . . . uk, v = v1 . . . vk, ui, vi ∈ Σ∗, k ≥ 1}.

Otherwise, the permuted scattered insertion is obtained:

u< v = u ∐ com(v).

For each of the above mentioned variants of insertion, a ”dual” deletion
operation can be also considered. Take, for example, the deletion operation,
which is the dual of the insertion operation. The deletion is the simplest and
most natural generalization of left/right quotient. The deletion of v from u
consists of erasing v not only from the left/right extremity of u, but from an
arbitrary place in u:

u >v = {w| u = w1vw2, w = w1w2}.

If v is not a subword of u, the result of the deletion is the empty set. Deletion
can be viewed as a one step rewriting relation of a special semi-Thue system
(see [1] for details).
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The following deletion operations are the counterparts of the insertion oper-
ations listed above. Properties of these operations and various related problems
have recently been investigated in [7], [8], [9], [10].

The permuted deletion of v from u is

u >v = u >com(v).

The controlled deletion of v from u, next to the control-letter a (shortly,
controlled deletion), is

u
a

> v = {u1au2| u = u1avu2}.

The scattered deletion of v from u is

u > v = {u1u2 . . . uk+1| k ≥ 1, u = u1v1u2v2 . . . ukvkuk+1, v = v1v2 . . . vk}.

The permuted scattered deletion of v from u is u >v = u > com(v).
Finally, the dipolar deletion of the word v from the word u is the set consisting

of the words obtained from u by erasing a prefix and a suffix whose catenation
equals v:

u ⇀↽ v = {w ∈ Σ∗| ∃ v1, v2 ∈ Σ∗ : u = v1wv2, v = v1v2}.

4 Operations possessing right-inverses

The process of solving the equation LY = R has much in common with the one
of finding solutions to the algebraic equation a+y = b, where a, b are constants.
In both cases, given the result of the operation and the left operand, the right
operand could be recovered from them by using an ”inverse” operation. In case
of addition, this role is played by subtraction, and in case of catenation, the role
is played by left quotient.

More precisely, the definition of left quotient states that for words u, v, w ∈
Σ∗, we have:

w = uv if and only if v = u\w.

In other words, given the result w of the catenation of u and v, and the left
operand u, we can deterministically obtain the right operand by using the left
quotient. Note that in the case of left quotient u\w, we consider u to be the
left operand.

As we are dealing also with operations whose result is a language instead
of a word, the need arises for a more general definition of ”inverse”. Such an
”inverse” operation will not solve the equation u ⋄ Y = w but only loosely
connect the right operand with the result and the left operand.
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Definition 2 Let ⋄, 2 be two binary word operations. The operation 2 is said
to be right-inverse of the operation ⋄ if for all words u, v, w over the alphabet Σ
the following relation holds:

w ∈ (u ⋄ v) iff v ∈ (u2w).

In other words, the operation 2 is the right-inverse of the operation ⋄ if,
given a word w in the set u ⋄ v, the right operand v belongs to a set obtainable
from w and the other operand, by using 2. Notice that the relation ”is the
right-inverse of ” is symmetric.

We are now ready to investigate the solutions to the equation L ⋄ Y = R, in
case ⋄ possesses a right-inverse. The following result generalizes Theorem 1 by
replacing catenation with abstract binary word (language) operation and left
quotient with its right-inverse.

Theorem 5 Let L, R be languages over an alphabet Σ and ⋄, 2 be two binary
word(language) operations right-inverses to each other. If the equation L⋄Y = R
has a solution Y , then also the language R′ = (L2Rc)c is a solution of the
equation. Moreover, R′ includes all the other solutions of the equation (set
inclusion).

Proof. We shall begin by proving two properties of the language R′.
(i) L⋄R′ ⊆ R. Assume the contrary and let w be a word belonging to L⋄R′

but not to R. There exist words u ∈ L, v ∈ R′ such that w ∈ (u ⋄ v). As 2

is the right-inverse of ⋄, we further deduce that v belongs to (u2w) which is a
subset of L2Rc. We arrived at a contradiction, as v was a word in R′. Our
assumption was false, therefore L ⋄ R′ ⊆ R.

(ii) Any language Y with the property L ⋄ Y ⊆ R is included in R′. Assume
the contrary and let v be a word belonging to such an Y , but not to R′. As
the word v belongs to R′c = L2Rc, there exist words w ∈ Rc, u ∈ L such
that v ∈ (u2w). As 2 is the right-inverse of ⋄, we deduce that w is a word
in u ⋄ v. This implies that w belongs to L ⋄ Y which was, according to the
hypothesis, a subset of R. We arrived at a contradiction, as w was a word in
Rc. Consequently, our assumption that such a language Y exists was false.

Return to the proof of the theorem. If there exists a solution Y to the
language equation L ⋄ Y = R then, according to (ii), Y ⊆ R′, which implies
R = L ⋄Y ⊆ L ⋄R′. As (i) states that L ⋄R′ ⊆ R, we conclude that L ⋄R′ = R,
that is, R′ is also a solution of the equation. ♥

Observe that Theorem 1 can now be obtained as a consequence of the pre-
ceding theorem by using the closure properties of REG under catenation and
quotient and the fact that left quotient is the right-inverse of catenation.

Theorem 5 gives us a powerful tool for solving the equation L⋄Y = R, when
L and R are regular languages. The following Proposition will allow us to apply
Theorem 5 to the operations defined in Section 3. Before that, we introduce the
notion of reversing an operation.
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Definition 3 Let ⋄ be a binary word operation. The word operation ⋄r defined
by u ⋄r v = v ⋄ u is called reversed ⋄.

Proposition 2 The following operations are right-inverses to each other:
catenation — left quotient
insertion — reversed dipolar deletion
shuffle — reversed scattered deletion
right quotient — reversed left quotient
deletion — dipolar deletion
scattered deletion — scattered deletion

Also the operations of controlled insertion, controlled deletion, permuted
insertion, permuted scattered insertion, permuted deletion, permuted scattered
deletion possess right-inverses.

Proof. Let Σ be an alphabet and u, v, w words over the alphabet Σ.
Catenation. The word w equals uv iff v = u\w.
Insertion. The word w belongs to (u< v) iff w = u1vu2, u = u1u2, which

happens exactly in case v ∈ (w ⇀↽ u).
Shuffle. The word w belongs to (u ∐ v) iff w = u1v1 . . . ukvk, ui, vi ∈ Σ∗,

1 ≤ i ≤ k, u = u1 . . . uk, v = v1 . . . vk. This, in turn holds iff v belongs to
w >u.

Right quotient. The word w equals u/v iff u = wv iff v ∈ w\u.
Deletion. The word w belongs to u >v iff u = w1vw2, w = w1w2. This

happens exactly in case v ∈ (u ⇀↽ w).
Scattered deletion. The word w belongs to u > v iff u = w1v1 . . . wkvk,

wi, vi ∈ Σ∗, 1 ≤ i ≤ k and v = v1 . . . vk, w = w1 . . . wk. This, in turn, holds iff
v belongs to u >w.

Controlled insertion. Define the gsm:

ga = (Σ, Σ ∪ {#, $}, {s0, s, s
′}, s0, {s′}, Pa),

Pa = {s0b−→bs0| b ∈ Σ} ∪ {s0a−→a#$s}∪
{s0a−→a#s} ∪ {sb−→bs| b ∈ Σ}∪
{sb−→b$s′| b ∈ Σ} ∪ {s′b−→bs′| b ∈ Σ},

where #, $ are new symbols which do not occur in Σ. It is easy to prove that
for every language L ⊆ Σ∗ we have:

ga(L) = {ua#w$v| u, v, w ∈ Σ∗, and uawv ∈ L}. (∗)

Define the morphism h : (Σ ∪ {#, $})∗−→Σ∗ by:

h(#) = h($) = λ, h(a) = a, ∀a ∈ Σ.

Define now the binary word operation:

u2v = h((ga(u) ⇀↽ v) ∩ #Σ∗$).
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The operation 2 is the right-inverse of controlled insertion next to the letter

a. Indeed, the word w belongs to u
a

< v iff w = u1avu2, u = u1au2. This, in
turn, happens iff v is an element of the set h((ga(w) ⇀↽ u) ∩ #Σ∗$) = w2u.

Controlled deletion. Consider the gsm and morphism defined above. The
operation defined by

u2v = h((ga(v) ⇀↽ u) ∩ #Σ∗$)

is the right-inverse of controlled deletion. Indeed, w belongs to (u
a

> v) iff
u = w1avw2, w = w1aw2. This happens exactly in case v is in u2w.

Permuted insertion. The word w belongs to the set u< v iff w = u1v
′u2,

v ∈ com(v′). This happens exactly in case v ∈ com(w ⇀↽ u).
Permuted scattered insertion. The word w is an element of the set u< v iff

w = u1v1 . . . ukvk, ui, vi ∈ Σ∗, 1 ≤ i ≤ k and u = u1 . . . uk, v ∈ com(v1 . . . vk).
This, in turn, holds iff v ∈ com(w >u).

Permuted deletion. The word w belongs to u >v iff u = w1v
′w2, w = w1w2,

v′ ∈ com(v). This holds iff v ∈ com(u ⇀↽ w).
Permuted scattered deletion. The word w belongs to the set u >v iff u =

w1v1 . . . wkvk, wi, vi ∈ Σ∗, 1 ≤ i ≤ k, and v ∈ com(v1 . . . vk), w = w1 . . . wk.
This happens exactly in case v ∈ com(u >w). ♥

Together with Theorem 5, Proposition 2 allows us to investigate the solu-
tions to the equation L ⋄ Y = R for regular languages L, R. Indeed, one can
prove theorems analogous to Theorem 1 for the following operations: insertion,
shuffle, left quotient, right quotient, deletion, scattered deletion, dipolar dele-
tion, controlled insertion, controlled deletion (see the closure properties proved
in [6]).

5 Operations possessing left-inverses

As we have seen in Section 2, the results concerning the equation LY = R could
be transferred without much difficulty to the equation XL = R. This naturally
gives the idea that it is possible to obtain general results as Theorem 5 also for
equations X ⋄ L = R. With this in mind, a notion corresponding to that of
right-inverse has to be defined.

Definition 4 Let ⋄, 2 be two binary word operations. The operation 2 is said
to be the left-inverse of the operation ⋄ if, for all words u, v, w over the alphabet
Σ, the following relation holds:

w ∈ (u ⋄ v) iff u ∈ (w2v).

In other words, the operation 2 is the left-inverse of the operation ⋄ if, given
a word in u ⋄ v, the left operand u belongs to the set obtained from w and the
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other operand v by using the operation 2. The relation ”is the left-inverse of”
is symmetric.

Note that the operation 2 is the left-inverse of the operation ⋄ if and only
if the operation 2

r is the right-inverse of the operation ⋄r.
Using the notion of left-inverse, we are now ready to state a twin theorem

of Theorem 5, for the equation X ⋄ L = R.

Theorem 6 Let L, R be languages over an alphabet Σ and ⋄, 2 be two binary
word(language) operations, left-inverses to each other. If the equation X⋄L = R
has a solution X ⊆ Σ∗, then also the language R′ = (Rc

2L)c is a solution of
the equation. Moreover, R′ includes all the other solutions of the equation (set
inclusion).

Proof. It follows from Theorem 5 by replacing ⋄ with ⋄r and 2 with 2
r. ♥

The results concerning the solutions of the equation XL = R, L, R regular,
can be now obtained as consequences of the preceding theorem, as REG is closed
under catenation and right quotient and the right quotient is the left-inverse of
catenation.

The following proposition will allow us to investigate the solutions of the
equation X ⋄ L = R for the operations defined in Section 3.

Proposition 3 The following operations are left-inverses to each other:
catenation — right quotient
insertion — deletion
controlled insertion — controlled deletion
shuffle — scattered deletion
permuted insertion — permuted deletion
permuted scattered insertion — permuted scattered deletion
left quotient — reversed catenation
dipolar deletion — reversed insertion.

Proof. Let Σ be an alphabet and u, v, w be words in Σ.
Catenation. The word w equals uv iff u ∈ w/v.
Insertion. The word w belongs to u< v iff w = u1vu2, u = u1u2, which

happens exactly in case u is in w >v.

Controlled insertion. The word w belongs to u
a

< v iff w = u1avu2, u =

u1au2 iff u ∈ (w
a

> v).
Shuffle. The word w belongs to u ∐ v iff w = u1v1 . . . ukvk, ui, vi ∈ Σ∗,

1 ≤ i ≤ k and u = u1 . . . uk, v = v1 . . . vk. This, in turn, holds iff u belongs to
w >v.

Permuted insertion. The word w is in the set u< v iff w = u1v
′u2, u = u1u2,

v′ ∈ com(v). This holds iff u ∈ (w >v).
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Permuted scattered insertion. The word w belongs to u< v iff we have w =
u1v1 . . . ukvk, ui, vi ∈ Σ∗, 1 ≤ i ≤ k, and u = u1 . . . uk, v ∈ com(v1 . . . vk). This
happens exactly in case u ∈ (w >v).

Left quotient. The word w equals u\v iff u = vw.
Dipolar deletion. The word w belongs to the set u ⇀↽ v iff u = v1wv2,

v = v1v2. This, in turn, happens exactly in case u is in the set v< w. ♥

Together with Theorem 6, the preceding Proposition allows us to solve to
the equation X ⋄ L = R, when L, R are regular, for the following operations:
insertion, controlled insertion, shuffle, right/left quotient, deletion, scattered
deletion, controlled deletion (see [6] for the closure properties of REG under
these operations).

6 Decidability issues

This section deals with the decidability of the question whether or not the
equation L ⋄Y = R (respectively X ⋄L = R) has a solution Y (respectively X),
where L and R are given regular languages and ⋄ is a binary invertible insertion
or deletion operation. Moreover, the existence of a singleton solution, that is, a
solution in the class of singleton languages, will be investigated.

The problem turns out to be decidable in case REG is closed under the
operation ⋄ and its inverse. Moreover, in case a solution to the equation exists,
it can be effectively constructed.

Theorem 7 Let ⋄ be one of the operations: catenation, insertion, shuffle, con-
trolled insertion, left/right quotient, deletion, scattered deletion, controlled dele-
tion. Then the problem ”Does there exist a solution Y to the equation L⋄Y = R
(respectively a solution X to the equation X ⋄ L = R) is decidable for regular
languages L and R.

Proof. Analogous to that of Theorem 2 and using the results from Theorem 5,
Theorem 6 and the closure properties of REG under the above operations (see
[6]) which are all constructive. ♥

Let ⋄ denote one of the operations: catenation, shuffle, permuted insertion,
permuted scattered insertion, controlled insertion. A proof similar to that of
Theorem 3 can be used to show that in all mentioned cases the existence of a
singleton solution to the equation L⋄Y = R is decidable for regular languages L
and R. In the same way one can show that the existence of a singleton solution
to the equation X ⋄ L = R is decidable for ⋄ denoting shuffle and controlled
insertion.

Let ⋄ denote one of the operations: insertion, iterated insertion, shuffle,
permuted scattered insertion, permuted insertion and controlled insertion. A
proof similar to that of Proposition 1 can be used to show that the existence
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of both a solution and a singleton solution to L ⋄ Y = R is undecidable for
context-free languages L and regular languages R. (If ⋄ stands for controlled
insertion we choose the control letter to be #.)

The folowing decidability results are basically due to the fact that the result
of a deletion operation from a word is a finite set.

Theorem 8 The problem ”Does there exist a word w such that L\w = R?” is
decidable for regular languages L and R.

Proof. Let L, R be regular languages over an alphabet Σ. Notice that, if R is
an infinite language, the answer to our problem is NO. If R is finite, we can
effectively construct the regular set:

P = (LRc)c −
⋃

S⊂R
(LSc)c,

where by ⊂ we denote strict inclusion.

Claim. For all w ∈ Σ∗ we have: w ∈ P iff L\w = R.

Indeed for given regular languages L and R we have:

(LRc)c = {v| L\v ⊆ R}.

Therefore, if L\w = R then:

w ∈ {v| L\v ⊆ R},
w 6∈ {v| L\v ⊆ S ⊂ R},

and consequently w ∈ P .
For the reverse implication, let w be a word in P . As L\w ⊆ R but L\w

is not included in any proper subset of R we have L\w = R. The proof of the
claim is thus complete.

The algorithm for deciding our problem will check first the finiteness of R. If
R is infinite, the answer is NO. Else, the set P is constructed and its emptiness
is decided. If P = ∅, the answer is NO. Else the answer is YES and any word
w in P satisfies the equation L\w = R. ♥

The proofs of the preceding theorem can be used to show that for ⋄ de-
noting right quotient, deletion, scattered deletion and controlled deletion, the
existence of a singleton solution to the equation X ⋄ L = R is decidable for
regular languages L and R. Indeed, one only needs to replace in the preceding
proof ”reversed catenation” (which is the left inverse of the left quotient) with
catenation, insertion, shuffle, controlled insertion respectively. For example, in
the case of deletion, the constructed set P will be:

P = (Rc
< L)c −

⋃

S⊂R

(Sc
< L)c.

The effectiveness of constructing P is based on the effectiveness of the closure
of REG under the considered operations (see, for example, [6]).
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Theorem 9 If ⋄ denotes the iterated deletion, the problem ”Does there exist a
singleton solution to the equation X ⋄L = R?” is decidable for regular languages
L and R.

Proof. Let L and R be regular languages over an alphabet Σ. If there exists
a word w such that w >

∗L = R then R is a finite language and w ∈ R.
Consequently, the algorithm for deciding our problem will begin by deciding
the finiteness of R. If R is infinite, the answer is NO. Else, for every w in
R the problem of whether or not w >

∗L equals R is decided. (Recall that,
according to the closure results from [6], the result of the iterated sequential
deletion w >

∗L is regular and can be effectively constructed.) If such a w is
found the answer is YES, else it is NO. ♥

7 Conclusions and open problems

Theorems 5 and 6 prove to be a powerful tool for investigating equations of the
form L ⋄ Y = R (respectively X ⋄ L = R) in case the operation ⋄ possesses a
right-inverse (respectively a left-inverse). They provide the biggest language R′

with the property L ⋄ R′ ⊆ R (respectively R′ ⋄ L ⊂ R). Consequently, if a
solution to the equation exists, the language R′ will also be a solution, namely
the maximal one.

These results can also be used for finding solutions to more general linear
equations such as:

(L1 ⋄1 X) ⋄2 L2 = R, (L1 ⋄1 X) ∪ (L2 ⋄2 X) = R,

to linear systems of equations:

(L1 ⋄1 X) ∪ (L2 ⋄2 Y ) = R1

(L3 ⋄3 X) ∪ (L4 ⋄4 Y ) = R2,

or to quadratic equations such as:

X2 = R or X ⋄ X = R and L ⋄ X ⋄ X = R.

The problem whether the existence of solutions to the equations L ⋄ Y = R,
X ⋄ L = R is decidable for given regular languages L and R remains open for
⋄ denoting iterated insertion, permuted insertion, permuted scattered insertion,
iterated deletion, permuted deletion, permuted scattered deletion. The difficulty
arises from the fact that REG is either not closed under the considered operation,
or is not closed under its inverse.

One obvious direction of research would be the study of the existence of
solutions to equations L ⋄ Y = R for context-free or context-sensitive languages
R.

14



Acknowledgements We would like to thank Professor Jean-Pierre Olivier for
extended discussions and for pointing out the references in [2], [3]. The valuable
suggestions of Professor Juhani Karhumäki and Dr. Jarkko Kari are gratefully
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